Chemistry 4055 (Spring 2013) Exam 2 Study Guide

Terms/Equations

- 1. Supersecondary structure
 - a) β - α - β loop
 - b) α-α corner
- 2. Tertiary structure
 - a) Fibrous Proteins
 - i. Structure
 - ii. Function
 - iii. α-keratin
 - iv. Collagen
 - b) Globular Proteins
 - i. Structure
 - ii. Function
 - iii. Myoglobin
 - iv. Hemoglobin
 - v. Enzymes
 - vi. Protein conformation
 - vii. Protein fold motifs
 - viii. Domains
 - ix. β barrel
 - x. α/β loop
- 3. Quaternary Structure
 - a) Subunits
 - b) Oligomer
 - c) Multimer
 - d) Protomer
 - e) Symmetry
 - i. Rotational symmetry
 - Cyclic symmetry
 - Dihedral symmetry
 - ii. Helical symmetry
- 4. Protein size/limits
- 5. Protein denaturation
 - a) Folding/protein stability
 - b) Melting temperature
 - c) Methods to gauge denaturation
 - d) Reversible denaturation
 - e) Semireversible denaturation

- f) Irreversible denaturation
- g) Denaturants
- 6. Protein Renaturation
- 7. Molecular chaperones
- 8. Protein disulfide isomerase (PDI)
- 9. Peptide prolyl cis-trans isomerase (PPI)
- 10. Protein-ligand binding
 - a) Oxygen-binding proteins
 - i. Heme group
 - ii. Myoglobin
 - Oxygen storage
 - iii. Hemoglobin
 - Oxygen transport
 - T state
 - R state
 - pKa of residues
 - Bohr effect
 - \bullet CO₂
 - H⁺
 - 2,3-bisphosphoglycerate
 - b) Equilibrium expression for binding
 - c) K_a (association constant)
 - d) K_d (dissociation constant)
 - e) θ (fraction of ligand binding sites on the protein that are occupied by ligand)
 - f) Partial pressure of gases
 - g) Hyperbolic binding curve
 - h) Sigmoidal binding curve
 - i) Protein cooperativity
 - Concerted model
 - Sequential model
 - j) Structural factors affecting binding
 - k) Positive and negative modulators
 - 1) Homotropic and heterotropic modulators
 - m) Le Chatelier's Principle
 - n) Sickle-cell anemia
 - o) Hemoglobin S
 - p) Antibodies
 - i. Monoclonal
 - ii. Polyclonal
 - q) Antigen

- r) ELISA assay
- s) Western blot

11. Enzymes

- a) Cofactor
- b) Coenzyme
- c) Prosthetic group
- d) Holoenzyme vs apoenzyme
- e) Enzyme clases
- f) Active site
- g) Substrate
- h) Reaction equilibria
- i) Reaction rates
- j) Biochemical standard free-energy change
- k) Activation energy
- 1) Transition state
- m) Reaction coordinate diagram for a chemical reaction
- n) Reaction intermediates
- o) Rate-limiting step
- p) Rate constant and units
- q) Rate equation
- r) Thermodynamic equations for rate and equilibria
- s) Binding energy
- t) Covalent catalysis
 - i. General acid-base catalysis
 - ii. Covalent catalysis
 - iii. Metal ion catalysis
- u) Enzyme kinetics
 - i. Initial rate (or initial velocity)
 - ii. Isosbestic point
 - iii. Maximum Velocity (V_{max)}
 - iv. Steady-state kinetics
 - v. Michaelis-Menten equation (general versión and specific one)
 - vi. Hyperbolic kinetics curve
 - vii. K_m
 - viii. k_{cat}
 - ix. k_{cat}/K_m (specificity constant)
 - x. Inhibitors
 - Irreversible
 - Reversible
 - Competitive
 - Uncompetitive
 - Mixed
 - Noncompetitive
 - xi. Chymotrypsin
 - Know its cleavage pattern

- Know catalytic triad
- Know key roles by amino acids in the active site

xii. Factors that affect enzyme catalysis

- Temperature
- pH
- Enzyme activation and nomenclature
- Enzyme covalent modification
- Cooperativity
- Positive and negative modulators
- Sigmoidal kinetics curve

12. Transferrin

- a) Location in the body
- b) Type of protein
- c) Holoprotein form
- d) Metal binding site residues
- e) Endocytosis
- f) Endosome
- g) Transferrin Receptor
- h) pH stability of Fe(III) bound transferrin
- i) Iron reléase in the cell
- j) Fe(III) reduction to Fe(II)
- k) Steap3
- 1) Divalent metal transporter (DMT)
- m) Ferrochelatase